Hessian matrix

A Hessian matrix is "a square matrixarrow-up-right of second-order partial derivativesarrow-up-right of a scalar-valued functionarrow-up-right, or scalar fieldarrow-up-right."

H=(δ2fδx2δ2fδxδyδ2fδyδxδ2fδy2)H = \begin{pmatrix}\frac{\delta^2 f}{\delta x^2} & \frac{\delta^2 f}{\delta x \delta y} \\ \frac{\delta^2 f}{\delta y \delta x} & \frac{\delta^2 f}{\delta y^2}\end{pmatrix}

Another way to write the same equation is

H=(δ2fδxxδ2fδxyδ2fδyxδ2fδyy)H = \begin{pmatrix}\frac{\delta^2 f}{\delta xx} & \frac{\delta^2 f}{\delta xy} \\ \frac{\delta^2 f}{\delta yx} & \frac{\delta^2 f}{\delta yy}\end{pmatrix}

Last updated