The process of taking a function and ignoring the terms above delta x.
The definition of a gradient is Rise over Run
RunRiseā=Gradient
This can be rearranged to:
RunĆGradient=Rise
or
(xāp)Ćfā²(p)=Rise
Given the Taylor series formula
g(x)=n=0āāān!f(n)(p)ā(xāp)n
We get
g1ā(x)=f(p)+fā²(p)(xāp)
If we express it using p
g1ā(p+Īp)=f(p)+fā²(p)(Īp)
then
g1ā(x+Īp)=f(x)+fā²(x)(Īx)
Finally, we get
f(x+Īx)=n=0āāān!f(n)(x)āĪxn
which can be succinctly rewritten as:
fā²(x)=Īxf(x+Īx)āf(x)ā+O(Īx)