Linearization

The process of taking a function and ignoring the terms above delta x.

The definition of a gradient is Rise over Run

RiseRun=Gradient \frac{Rise}{Run} = Gradient

This can be rearranged to:

Run×Gradient=Rise Run \times Gradient = Rise

or

(x−p)×f′(p)=Rise (x - p) \times f'(p) = Rise

Given the Taylor series formula

g(x)=∑n=0∞f(n)(p)n!(x−p)n \large g(x) = \sum\limits_{n=0}^{\infty} \frac{f^{(n)}(p)}{n!}(x-p)^n

We get

g1(x)=f(p)+f′(p)(x−p) \large g_1(x) = f(p) + f'(p)(x-p)

If we express it using p

g1(p+Δp)=f(p)+f′(p)(Δp) \large g_1(p + \Delta p) = f(p) + f'(p)(\Delta p)

then

g1(x+Δp)=f(x)+f′(x)(Δx) \large g_1(x + \Delta p) = f(x) + f'(x)(\Delta x)

Finally, we get

f(x+Δx)=∑n=0∞f(n)(x)n!Δxn\large f(x + \Delta x) = \sum\limits_{n=0}^{\infty}\frac{f^{(n)}(x)}{n!}\Delta x^n

which can be succinctly rewritten as:

f′(x)=f(x+Δx)−f(x)Δx+O(Δx)\large f'(x) = \frac{f(x + \Delta x) - f(x)}{\Delta x} + O(\Delta x)

Last updated