The process of taking a function and ignoring the terms above delta x.
The definition of a gradient is Rise over Run
RunRise​=Gradient
This can be rearranged to:
Run×Gradient=Rise
or
(x−p)×f′(p)=Rise
Given the Taylor series formula
g(x)=n=0∑∞​n!f(n)(p)​(x−p)n
We get
g1​(x)=f(p)+f′(p)(x−p)
If we express it using p
g1​(p+Δp)=f(p)+f′(p)(Δp)
then
g1​(x+Δp)=f(x)+f′(x)(Δx)
Finally, we get
f(x+Δx)=n=0∑∞​n!f(n)(x)​Δxn
which can be succinctly rewritten as:
f′(x)=Δxf(x+Δx)−f(x)​+O(Δx)