From the Wikipediaarrow-up-right:
"In mathematicsarrow-up-right, the Taylor series of a functionarrow-up-right is an infinite sumarrow-up-right of terms that are expressed in terms of the function's derivativesarrow-up-right at a single point."
g(x)=βn=0βf(n)(p)n!(xβp)n\large g(x) = \sum\limits_{n=0}^{\infty} \frac{f^{(n)}(p)}{n!}(x-p)^ng(x)=n=0βββn!f(n)(p)β(xβp)n
A Taylor series expansion of a function about 0
g(x)=βn=0βf(n)(0)n!xn \large g(x) = \sum\limits_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^ng(x)=n=0βββn!f(n)(0)βxn
Last updated 4 years ago